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In this article we investigate the ship dynamics in supercruise within star systems. We identify
the maximal velocity, which is the speed a ship attempts to reach when set to maximal throttle. We
measure this velocity, and find that it depends on how far one is away from the nearest star. Thus,
one can use geodesic equations to compute the optimal flight path. We simulate some trajectories,
and finally give some guidelines as to how to move optimally in a star system.

I. MOTIVATION

Modern civilisation rests on the frame shift drive
(FSD). Without it, there would be no interstellar travel
to speak of. Although there have been attempts at
colonising the galaxy from Earth without faster-than-
light travel1, it can be safely asserted that our modern
society relies on the FSD.

In its present day incarnation, the FSD is constructed
solely by Sirius Inc, which uses its monopoly to keep
the construction details of the drive as secret as possi-
ble. Therefore, despite its ubiquity, many of the features
of the FSD are not entirely understood. Its use by the
galactic community rests, ironically, on experience and
hearsay, rather than precise technical specifications.

To overcome this problem, we attempt to learn more
about the properties of the FSD by measurements and
computational analysis. In this article, we discuss the
optimal travel through a solar system by FSD. We are
interested in the following question:

What is the supercruise flight path between
two points in a star system that takes the least
amount of time?

This is, in fact, not a straight line, since a ship gets
slower when closer to a star or planet. In the following
article, we will investigate the details, and compute the
optimal flight path, analytically and numerically.

In section II, we talk about ship dynamics and our
general findings first. In section III we discuss the five
different regions around a star, and how the maximal
velocity of a ship behaves as function of distance to a
star. This contains detailed measurements taken in a
Cobra Mk III. In section IV we use this data to compute
the quickest paths through a star system. While the
optimal flight paths can be quite complicated, one can,

∗ bbahr26@gmail.com
1 See e.g. information about generation ships at https://canonn.

science/codex/cartographics-exploration/.

very roughly, sum them up in some broad rules for
optimal flying:

Rule 1: Leave the region where v = 0.33c as directly
as possible!

Rule 2: It is almost never recommendable to fly di-
rectly towards one’s target in a straight line. Rather,
give the nearest star a wide berth

These rules are mere guidelines. For more specific
rules, which apply for the different regions around a star,
we refer to section IV.

We close the article with a summary of our findings.

II. SHIP DYNAMICS IN SUPERCRUISE (SC)

A ship in supercruise (SC) can move much faster than
light, based on original calculations from the late 20th
century [1, 2]. It allows to reach even far away stations
in mere minutes2.

When setting the throttle to 100% in SC, the ship at-
tempts to obtain the maximal velocity vmax. Note that
for ships with low acceleration, it will take some time to
reach vmax. When the ship in the meantime enters a
region with larger vmax, the ship will lag behind its max-
imal velocity for quite some time. Also note that vmax

is not actually the maximal speed a ship can have: If the
ship has low deceleration, it might not slow down quickly
enough when vmax reduces. It will then be faster than
its indicated vmax until it has slowed down sufficiently.
The ship’s computer usually indicates this by a “SLOW
DOWN” message.

In our article, we are interested in vmax, and how it
changes. A first few – quite surprising – observations we
made were:

2 The furthest station from the entry point of a system is Hutton
Orbital Station in Alpha Centauri. Their remoteness makes for
few visitors, which the owners of the station have tried to remedy
by giving out a free Anaconda to any pilot who makes it to their
station.

mailto:bbahr26@gmail.com
https://canonn.science/codex/cartographics-exploration/
https://canonn.science/codex/cartographics-exploration/
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FIG. 1. Measurement of vmax: Distance is r = 77.3, throttle at 10%, so vmax = 15.3.

1. vmax does not depend on the type of ship
or the type of equipped frame FSD. As far
as we can tell, the maximal velocity of a ship is
the same for the type Sidewinder, Cobra Mk III,
Asp Explorer, and Lakon Type 9. This makes our
discussion much more general than we had origi-
nally thought. Note that all of these ships have
vastly different acceleration/deceleration, though.
Our discussion is most precise for those ships with
high acceleration/deceleration, since for those their
actual speed will always be close to vmax when un-
der full throttle.

2. vmax does only depend on the distance r to
the nearest stellar body. We are only consid-
ering stellar bodies here, which means our results
are applicable only for ships that do not come too
close to planets. Planets, as well as the dynam-
ics of planetary landing, will be treated in a future
article. Also note that, technically, not the clos-
est star counts, but the one which sets the lowest
vmax, as given by the formulas presented in the next
sections. For most cases, this will, however, be the
closest star. Details will appear in a future article.3

3. vmax(r) does not depend on the type of star,
or its mass. In particular, the only important
data is the closest star, not the most massive one.

3 We thank CMDR bakwards for pointing this out to us.

Further stars have no influence on vmax(r). This
rule comes with the caveat that it only holds for
main sequence stars. 4

A. Measuring vmax

For the rest of the article, we adopt the following
convention:

Convention: Throughout this article, speed v is
always measured in multiples of the speed of light
c ≈ 3 · 108ms−1. Furthermore, distance r will gen-
erally be measured in light seconds ls ≈ 3 · 108m.

In order to measure vmax depending on r, we chose a
system with only one star, which we took to be COL 285
SECTOR NG-F B11-2. The ship layout was a Cobra Mk
III with A-grade FSD and A-grade thrusters. We set the
throttle to 10%, in order to be as slow as possible, and

4 The dynamics for black holes seems to be slightly different, which
might be due to gravitational time distortion. The curves for
neutron stars / white dwarfs have not been tested thoroughly,
due to the danger of flying in their immediate vicinity. Further
scientific analysis is contingent on a funding grant for replacing
destroyed ships and a lifetime’s supply of remlok masks.
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region I region II region III region IV region V

FIG. 2. There are five important regions for supercruise (SC) around a star, which depend on the distance r. The reddish
region depicted is the exclustion zone, in which a ship drops out of SC.

were trying to fly as perpendicular as possible to the star.
The reason was that r would not change too quickly, and
the ship had enough time to adjust its speed to be equal
to vmax. We then logged both r and the velocity, which
would be vmax/10, due to our reduced throttle (see figure
1).

III. THE FIVE REGIONS AROUND A STAR

There are five principal regions around a star, in which
its velocity curve takes on different shapes.

vmax(r) =



vI(r) r0 < r < r1

vII(r) r1 < r < r2

vIII(r) r2 < r < r3

vIV(r) r3 < r < r4

vV(r) r4 < r

These are, surprisingly, relatively independent of the fea-
tures of the star, or the ship in question, as already indi-
cated. Some regions depend slightly on the radius of the
star, while other regions do not. All regions appear to
be completely independent on the details and outfitting
of the ship. In the following, we consider the five regions
in detail.

A. Region I

Region I is the closest one in which SC is still possible.
It lasts from the exclusion zone r0 to the beginning of
r1. Throughout all of region I, the maximal velocity of a
spaceship is constant, namely 33% of the speed of light.

vI(r) =
1

3
(1)

In the cockpit, this is depicted as

v = 0.33c.

The precise position r0 of the exclusion zone, as well as of
r1, depend on the size of the star in question. By exten-
sive testing with various different stars, we have found
that r1 depends affine-linearly on the radius5 R of the
star. The connection is

r1 = 2.81R + 0.65, (2)

where R is measured in multiples of solar radii Rsol =
6.96 · 108m = 2.32 ls, and r1 is given in light seconds ls.
Figure 4 depicts the measurements.

B. Region II

Region II connects region I and III, and is a linear in-
terpolation between the two. Measurements with several
stars have determined the velocity curve to have the same
slope of 2

3 throughout, so the velocity curve is

vII(r) =
2

3
(r − r1) +

1

3
. (3)

The value of r2 is determined by the intersection of (3)
with vIII, i.e. it is the solution of for

vII(r2) = vIII(r2),

which, with (2), turns out to be

r2 =
10r1 − 5

7
= 4.01R+ 0.21. (4)

C. Region III

Region III lies between r = r2 (4) and r3 = 76.5 ls.
Note that, as soon as R > 19.0Rsol, then Region III

5 This seems counter-intuitive, since the frame-dragging effect
should be influenced by mass, not by radius, and these two prop-
erties are not linearly related in a star. This just serves to show
that there are many mysteries of the FSD we do not understand.
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FIG. 3. Transition of the velocity curve from region I to
region II to region III. The star in question has a radius of
R = 1.22Rsol. This radius indicates r1 = 4.07 due to (2)
and r2 = 5.10 due to (4), which fits the measurement data
depicted in this figure.

essentially does not exist, and region II directly goes over
to region IV. In region III the maximal velocity of a ship
is proportional to the distance, with a good fit being

vIII(r) =
1

5
r,

where vIII is measured in multiples of c, and r, as always,
in light seconds ls.

D. Region IV

Region IV is the one in which most SC will take place.
It begins at

r3 = 76.5, (5)

independent of the radius of the star. The maximal ve-
locity vmax is continuous there, i.e. vIII(r3) = vIV(r3).
However, the first derivative of vmax is not continuous,
as one can see in figure 5. By plotting −log(dvIV/dr)
over vIV, one finds an affine linear relation (see figure 6),
which leads to the ansatz

vIV(r) = a ln
(r
b

+ c
)
. (6)

By numerical regression, one can find a fairly good fit for
these parameters6, as

a = 351.5

b = 16826.41

c = 1.0399

6 The error between our formula and the measured values are be-
low one percent, which we deem good enough for our calculations.

FIG. 4. Measured r1 in ls versus the radius R of the star in
solar radii Rsol.

FIG. 5. Maximal velocity vmax versus r, around r = r3 =
76.5ls.

E. Region V

From time to time, we all would like to travel faster
than the total SC maximum speed of

vV(r) = 2001,

but I’m afraid we can’t do that. From a certain point on,

FIG. 6. Plot of −log(dv/dr) versus v in region IV.
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the beginning of region V, the speed maxes out. Unfor-
tunately, a precise localisation of the beginning of region
V is difficult, since the unit of r in the standard HUD
display of every space-ship switches from ls to ly as soon
as r ≥ 0.1 ly ≈ 3.16 · 106 ls. We therefore simply assume
that vmax is continuous there, and define r4 to be the
solution to

vIV(r4) = 2001,

which leads to

r4 = 4.975 · 106 ls.

This concludes the description of the maximum veloc-
ity of a ship in SC. With this information, we now turn
to compute the optimal flight path.

IV. COMPUTING THE OPTIMAL FLIGHT
PATH

In order to compute the optimal flight path through a
star system, we make two simplifying assumptions:

1. A ship always flies at its maximum allowed velocity
vmax.

2. A ship can change direction instantly.

Both points will be almost true for small and agile ships,
but not quite as good for e.g. Cutters or Type 9s.

A. The time-metric

For the actual computation, we use an ancient method
of variational analysis and geometry. Assume a ship
moves from a point with vector ~r to the point with vector
~r+d~r, i.e. undergoes an infinitesimal displacement of d~r.
The time dt that passes between the two points satisfies

dt2 =
1

v2
d~r 2 =

1

v2

(
dr2 + r2

(
dθ2 + sin2 θ dφ2

))
,(7)

where v = v(r) is the velocity of the ship. We assume
that

v(r) = vmax(r),

which only depends on r. We work with polar coordi-
nates xi = (r, φ, θ) in R3, so we assume that the only
star sits in the center of the coordinate system.

We can see that the notation (7) is similar to that of
a metric of Riemannian signature, with time t playing
the role of the arc length of a curve. We therefore call
it “time-metric”, or “timetric” for short. Minimising the
arc length of curves amounts to choosing the routes which

have stationary time – which, for Riemannian metrics,
are also those of local minimal time7.

To compute the curves of minimal arc lenght (i.e. min-
imal time needed to travel along the curves), one can
solve the geodesic equations for the metric (7). These
equations are [3]:

ẍi + Γijkẋ
j ẋk = 0, (8)

where the dot · refers to the derivative by the curve pa-
rameter t. Equations (8) are the geodesic equations for
the time-metric (7), with the Christoffel symbols

Γijk =
1

2
gil
(
∂glj
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
. (9)

Here gij denote the coefficients of the time-metric, which
one can read off from (7) as

grr =
1

v2
, gθθ =

r2

v2
, gφφ =

r2 sin2 θ

v2
.

The gij denote the coefficients of the inverse time-metric,
which are given by

grr =
1

grr
, gθθ =

1

gθθ
, gφφ =

1

gφφ
.

It is straightforward to compute the Christoffel symbols:

Γrrr =
v′

v
, Γrθθ = r2

v′

v
− r

Γrφφ = sin2 θ Γrθθ, Γθθr = Γθrθ =
1

r
− v′

v

Γφφr = Γφrφ =
1

r
− v′

v

Γθφφ = − sin θ cos θ Γφφθ = Γφθφ = tan θ

By v′ we denote the derivative of v w.r.t. r.
The metric (7) has three Killing vector fields L1, L2,

L3, which satisfy the standard rotation algebra [Li, Lj ] =
εijkLk (+cyclic permutations). Therefore, there is a con-
served 3-vector along geodesics. Without loss of general-
ity, one can set θ ≡ π

2 , i.e. only treat motion in the (x, y)-
plane. With that choice, the conserved vector points in
the z-direction, and its norm is equal to the inner product
` := 〈ẋ, L3〉 = 〈ẋ, ∂φ〉, given by

` =
r2

v(r)2
φ̇. (10)

The quantity (10) is the analogue of the angular momen-
tum, although weighted by v(r)2.

7 “Local” here means that the curves determined by this method
cannot be changed without increasing total flight time t. How-
ever, there might be other local minima with smaller t.
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Since θ is fixed, the only interesting dynamical quan-
tities ar r and φ, and their equations of motion are

r̈ +
v′

v
ṙ2 +

(
r2
v′

v
− r
)
φ̇2 = 0, (11)

φ̈ + 2

(
1

r
− v′

v

)
φ̇ṙ = 0. (12)

The second geodesic equation (12) can be rewritten as

d`

dt
= 0, (13)

which is just the conservation of `, as expected. The
equation (11) can, together with (12), be reformulated
as

d

dt

(
ṙ2 + r2φ̇2

v2

)
= 0, (14)

which is just the normalisation of the curve, given by

ṙ2 + r2 φ̇2 = v2, (15)

which one can, with (10), rewrite as

ṙ = ±v
√

1− `2v2

r2
. (16)

Here one has to be careful as to choose the correct sign,
which is determined by the initial conditions of the curve
(and decides whether one approaches the star, or moves
away from it). In order to solve the geodesic equations
for a given initial position and initial velocity, one way
is to compute ` from the initial data as per (10), and
then solve the ODE (16), which gives r(t). Then one can
rewrite (10) as

φ̇ =
`v2

r2
(17)

with the solution for r(t), and integrate it to find φ(t).
In the following, we will go a slightly different path, since
we will be interested not in the initial value problem, but
rather the boundary data problem.

FIG. 7. Definition of the flight angle α.

An important concept for studying the dynamics of
flight paths will be the flight angle α, measured as angle
between the direction of flight and the outward normal
pointing away from the star (see figure 7). From elemen-
tary geometry, we have

sinα =
rφ̇

v
. (18)

B. Flight paths in region I

Since v is constant in region I, the solution to the
geodesic equations (8) are simply straight lines. So apart
from the exclusion zone at r = r0, one should try to reach
ones destination as quickly as possible when flying on a
straight line.

C. Flight paths in region II

Consider the equation (11) for r. In region II, one has

v′

v
− 1

r
=

−1.15 + 2.81R

r(1.15 + r − 2.81R)
(19)

For R > 0.409, this is always greater than zero, which
means that r̈ < 0 for any flight angle. This means that
all flight paths are curved back to the star. In order to
leave region II, a geodesic therefore needs to have a low
enough flight angle α.

This is depicted in figure 8. Left we have a flight path
with low α1, which can leave region II and enter region
III, while the high flight angle α1 on the right leads to
a geodesic which curves back to the star, never reaching
region III. The boundary between the two cases is when
α1 = αcrit, i.e. when α2 = π

2 . Define

v1 := vII(r1) =
1

3

v2 := vII(r2) =
1

5
r2.

Due to (10) and (18), we have

` =
r1
v1

sinα1 =
r2
v2

sinα2,

in other words

sinαcrit =
5

3r1
. (20)

The critical angle depends on r1, and therefore, via (2),
on the radius R of the star. The relation between the
two is depicted in figure 9.

As one can see, the critical angle decreases quickly.
Geodesics which have a flight angle lower than the
critical value αcrit cannot leave region II. In other words,
traversing region II on an optimal flight path requires a
flight angle smaller than the critical one. In general one
can say:
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region I

region II

region III

FIG. 8. When α1 at r = r1 is larger than the critical angle αcrit, the geodesic can not reach r2, and is deflected back to region
I. This is depicted in the right case. In the left case, α1 is lower than αcrit, which allows the geodesic to reach region III.

2 4 6 8 10
R(RSol )
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αcrit (°)

FIG. 9. Critical angle αcrit depicted for different star radii
R.

When you need to get further away from the star than
a few light seconds, do so as directly as possible!

In other words, keep the flight angle α smaller than the
critical value αcrit. A low flight angle means flying almost
directly away from the star. Of course, the exact flight
angle depends very much on where one wants to go.

D. Flight paths in region III

In region III, the optimal flight path is of a quite simple
form, since v(r) = A · r with

A =
1

5
.

Therefore, the motion for φ can be read off the conserva-
tion law (10), which then reads

φ̇ = A2` = const,

10 20 30 40 50

10

20

30

40

50

FIG. 10. Flight paths in region III around a star: Several
logarithmic spirals, which start at r = 10ls, and with different
values for α = π/10, π/6, π/5, π/4, π/3, π/2. Axes labeled by
ls. Star and ships not to scale.

i.e. φ̇ is constant. On the other hand, consider the angle
α between the velocity vector and the outward pointing
normal (see figure 7), we then get

sinα =
r

φ̇
v =

1

A
φ̇.

In other words, the geodesics are those curves which
have a constant angle with the outward normals. These
are called logarithmic spirals. The solution can be read-
ily computed: A flight path starting at the coordinates
(r0, φ0) with a flight angle α leads to

r(t) = r0 exp (A t cosα) ,

φ(t) = φ0 + A t sinα.
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Different flight paths for varying α are depicted in figure
10. The rule for flight paths entirely in region III can
thus be formulated as follows:

When flying in region III, keep a constant angle to-
wards the star.

While sounding simple enough, in practice it might
prove difficult, since the necessary value of the flight
angle α that one should keep depends on where one
wants to go. Still, as a rule of thumb, one could say
that, when trying to reach a point on the other side of
the star, which has a roughly similar distance to the
star than the own ship, it is most time-efficient to keep
a constant distance to the star, and travel to the desired
point on a circular arc. This could be formulated as
follows:

In region III, the quickest path to the other side of a
star is the circular path around it.

E. Flight paths in region IV

Region III, which ranges from r = r3 = 76.5ls to
r = r4, is the region in which most flight will realistically
take place. The form (6) of v(r), however, makes it
difficult to solve the geodesic equations analytically. To
get some feeling for the geodesics that run in this region,
We consider two cases:

Case 1: A ship starts at a distance of r = r0 to the star.
What is the quickest path to the opposite side of the
star with the same distance?

To compute this numerically, we rewrite the equation
for ṙ as a differential equation for r(φ). We get, with
(16): (

dr

dφ

)2

=
ṙ2

φ̇2
=

v2 − r2φ̇2

φ̇2
.

We assume that the ship begins its journey at φ = 0 and
travels to φ = π, where r = r0 in both cases. Due to
symmetry, the path needs to have ṙ = 0 at φ = π

2 . At
that point, the ship is closest to the star, i.e. r = rmin.
With (14) one can deduce

` =
r2minφ̇

v2min

=
rmin

vmin

with vmin = v(rmin). Hence, we have(
dr

dφ

)2

= r2
(
v2minr

2

v2r2min

− 1

)
.

rmin r0 rmin r0

100 528 8000 10971

200 697 8500 11715

300 846 9000 12471

400 984 9500 13236

500 1116 10000 14011

750 1430 20000 31327

1000 1733 30000 51375

2000 2930 40000 73460

3000 4123 50000 97164

4000 5421 75000 161883

5000 6738 100000 232216

6000 8103 180000 485051

7000 9515 300000 911453

FIG. 11. Pairs of rmin and r0 in region IV. All numbers are
measured in ls.

For φ(r) this gives an ordinary differential equation

dφ

dr
= ± 1

r

√
v2minr

2

v2r2min
− 1

,

which one can solve numerically, e.g. with φ(rmin) = π
2

as initial condition. This way, one can restrict to the
+-sign for the whole trajectory. The point r0 can then
be read off as the solution of φ(r0) = π. The table
in figure 11 depicts several pairs r0, rmin, and figure
12 shows the nontrivial dependence of the two. Some
sample flight paths have been drawn in figures 15 and 16.

One can see that r0/rmin has a minimum at around
r0 ≈ 103.75ls. This is interesting, in that it means the
decision of how to get to the opposite side of a star de-
pends on how far one is away initially. If one is at around
r0 ≈ 7500ls − 1000ls, it is quickest to travel roughly a
circular path around the star. However, if one is much
further away or much closer, it is more efficient to pass
the star much closer, i.e. let rmin be much smaller than r0.

Case 2: We consider a ship flying from A to B, both at
distance 1000ls to the star, and separated by an angle
of ∆φ.

From the previous discussion, we know that if ∆φ = π,
then rmin ≈ 412ls. The different rmin can be read off in
table 14. Some trajectories are depicted in figure 13.

In general one can say that it is beneficial to not
get too close to the star. Of course, in such generality
the statement is not very helpful. However, the precise
details of how close one should get to the star at
all depends very much on the boundary conditions,
i.e. where one is and where one want to go. Thus, there
is no universal statement for how to travel in region III.
The best one can give is some general advice.
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FIG. 12. The ration r0/rmin has a minimum at around r0 ≈
103.75, at which it becomes around r0/rmin ≈ 1.3. These
curves are almost circular, while curves with different r0 are
much flatter. See also figures 15, 16 for examples.

On your path through region IV, do not get much
closer to the star if possible. Your minimal distance
to the star should not be lower than one half to one
quarter of your initial position.

F. Flight paths in region V

The speed is constantly v = 2001 in region V, so opti-
mal paths are straight lines again. Since very few points
of interest usually lie in region V, a further discussion is
unnecessary.

V. SUMMARY

In this article we have presented measurements of the
maximal velocity vmax, i.e. the speed a ship attempts to

reach when at full throttle. We found that this speed
does only depend on the distance to the nearest star, but
does not depend on the type of ship or its modules, and
almost not at all on the details of the star in question.

We found that the dependence of vmax on r is behaving
vastly differently in different distances to the star. We
have denoted these regions from I to V (figure 2).

With the measurement of vmax, we could compute op-
timal flight paths through a system with only one central
star and no planets. We did this by computing solutions
to the geodesic equations (11), (12). Naturally, the dy-
namics is very different depending on which region the
ship is in, i.e. how far away it is precisely from the star.

The details of optimal flight paths can be found in
the article. In the text, we formulated some guidelines
for describing the geodesics. They are specific to the
regions, and can be summarised as the following “rules
for optimal flying”:

• Rule 1: If you are close to the star, get away, and
leave the region where v = 0.33c as directly as pos-
sible!

• Rule 2: It is almost never recommendable to fly
directly towards one’s target in a straight line.
Rather, give the nearest star a wide berth

These rules are, of course, only guidelines. Also, they
probably amount to what many CMDRs already do
intuitively. Nonetheless, we hope that this quantita-
tive analysis might be of benefit for some pilots out there.

Fly Safe!
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FIG. 13. Different flight paths in region IV. The ship starts from the point on the left, 1000ls away from the star, and travels
to different stations, having the same distance to the star, but with some separation angle ∆φ (i.e. the angle between ship and
station, as seen from the star). The flight paths are accurate solutions to the geodesic equations (11), (12). Axes labeled by ls.
Star, ship, and stations not to scale.
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178.2 425 54.4 950

175.3 450 48.7 960
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FIG. 14. Pairs of separation angle ∆φ (measured in ◦), and
rmin (in ls) for paths in region III.
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FIG. 15. Three optimal flight paths from one side of the star to the other, with different minimal distances rmin = 100ls, 500ls,
and 2000ls. The star is situated in the center of the coordinate system, but is not to scale. Axes labeled by ls.
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FIG. 16. Three optimal flight paths from one side of the star to the other, with different minimal distances rmin = 2000ls, 1000ls,
and 30000ls. The star is situated in the center of the coordinate system, but is not to scale. Axes labeled by ls.
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